Quantitative EEG and prediction of outcome in neonatal encephalopathy: a review.
Sriya RoychaudhuriKatie HannonJohn SunwooAisling A GarveyMohamed El-DibPublished in: Pediatric research (2024)
Electroencephalogram (EEG) is an important biomarker for neonatal encephalopathy (NE) and has significant predictive value for brain injury and neurodevelopmental outcomes. Quantitative analysis of EEG involves the representation of complex EEG data in an objective, reproducible and scalable manner. Quantitative EEG (qEEG) can be derived from both a limited channel EEG (as available during amplitude integrated EEG) and multi-channel conventional EEG. It has the potential to enable bedside clinicians to monitor and evaluate details of cortical function without the necessity of continuous expert input. This is particularly useful in NE, a dynamic and evolving condition. In these infants, continuous, detailed evaluation of cortical function at the bedside is a valuable aide to management especially in the current era of therapeutic hypothermia and possible upcoming neuroprotective therapies. This review discusses the role of qEEG in newborns with NE and its use in informing monitoring and therapy, along with its ability to predict imaging changes and short and long-term neurodevelopmental outcomes. IMPACT: Quantitative representation of EEG data brings the evaluation of continuous brain function, from the neurophysiology lab to the NICU bedside and has a potential role as a biomarker for neonatal encephalopathy. Clinical and research applications of quantitative EEG in the newborn are rapidly evolving and a wider understanding of its utility is valuable. This overview summarizes the role of quantitative EEG at different timepoints, its relevance to management and its predictive value for short- and long-term outcomes in neonatal encephalopathy.