High-Voltage Resistant Ionic Liquids for Lithium-Ion Batteries.
Haojun QiYongyuan RenSiyu GuoYuyue WangShujin LiYin HuFeng YanPublished in: ACS applied materials & interfaces (2019)
With the growing demand for high energy and high power density rechargeable lithium-ion batteries, increasing research is focused on improving the output voltage of these batteries. Herein, a series of pyrrolidinium and piperidinium cations with various N-substituents (including cyanomethyl, benzyl, butyl, hexyl, and octyl groups) were synthesized and investigated with respect to their electrochemical stability under high voltages. The influence of substitutions at the N-position of pyrrolidinium and piperidinium cations on their high-voltage resistance was studied by both theoretical and experimental approaches. The voltage resistance was enhanced as the electron-donating ability of the substitutes increased. Furthermore, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([C6Py][TFSI]) exhibited the highest decomposition voltage at approximately 5.12 V and showed promising potential in a lithium-ion battery.