Login / Signup

Planar polarity in primate cone photoreceptors: a potential role in Stiles Crawford effect phototropism.

Anna VerschuerenLeyna BoucheritUlisse FerrariStéphane FouquetCéline Nouvel-JaillardMichel PaquesSerge PicaudJosé Alain Sahel
Published in: Communications biology (2022)
Human cone phototropism is a key mechanism underlying the Stiles-Crawford effect, a psychophysiological phenomenon according to which photoreceptor outer/inner segments are aligned along with the direction of incoming light. However, such photomechanical movements of photoreceptors remain elusive in mammals. We first show here that primate cone photoreceptors have a planar polarity organized radially around the optical center of the eye. This planar polarity, based on the structure of the cilium and calyceal processes, is highly reminiscent of the planar polarity of the hair cells and their kinocilium and stereocilia. Secondly, we observe under super-high resolution expansion microscopy the cytoskeleton and Usher proteins architecture in the photoreceptors, which appears to establish a mechanical continuity between the outer and inner segments. Taken together, these results suggest a comprehensive cellular mechanism consistent with an active phototropism of cones toward the optical center of the eye, and thus with the Stiles-Crawford effect.
Keyphrases
  • high resolution
  • high speed
  • endothelial cells
  • induced apoptosis
  • single molecule
  • cell death
  • tandem mass spectrometry
  • pi k akt