Natural Infection Rate of Known Tomato chlorosis virus-Susceptible Hosts and the Influence of the Host Plant on the Virus Relationship With Bemisia tabaci MEAM1.
Arnaldo Esquivel-FariñaJorge Alberto Marques RezendeWilliam M WintermantelLaura Jenkins HladkyDaiana BampiPublished in: Plant disease (2021)
Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) was identified in tomato crops in São Paulo State, Brazil, in 2006. Management strategies to control external sources of inoculum are necessary, because chemical control of the whitefly vector Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) has not efficiently prevented virus infections and no commercial tomato varieties or hybrids are resistant to this crinivirus. We first evaluated the natural infection rate of some known wild and cultivated ToCV-susceptible hosts and their attractiveness for B. tabaci MEAM1 oviposition. Physalis angulata was the most susceptible to natural infection in all six exposures in 2018 and 2019. No plants of Capsicum annuum 'Dahra' or Chenopodium album became infected. Solanum melongena 'Napoli' had only two infected plants of 60 exposed. Capsicum annuum and Chenopodium album were the least preferred, and Nicotiana tabacum and S. melongena were the most preferred for whitefly oviposition. In addition, from 2016 to 2019, we surveyed different tomato crops and the surrounding vegetation to identify ToCV in weeds and cultivated plants in the region of Sumaré, São Paulo State. Only S. americanum, vila vila (S. sisymbriifolium), and Chenopodium album were found naturally infected, with incidences of 18, 20, and 1.4%, respectively. Finally, we estimated the ToCV titer (U.S. and Brazilian isolates ToCV-FL and ToCV-SP, respectively) by quantitative reverse transcription PCR in different ToCV-susceptible host plants and evaluated the relationship between virus acquisition and transmission by B. tabaci MEAM1. The results clearly showed significant differences in ToCV concentrations in the tissues of ToCV-susceptible host plants, which appeared to be influenced by the virus isolate. The concentration of the virus in plant tissues, in turn, directly influenced the ToCV-B. tabaci MEAM1 relationship and subsequent transmission to tomato plants. To minimize or prevent damage from tomato yellowing disease through management of external sources of ToCV, it is necessary to correctly identify potentially important ToCV-susceptible hosts in the vicinity of new plantings.