Login / Signup

Self-Assembly of Amphiphilic Peptides for Recognizing High Furin-Expressing Cancer Cells.

Xiang LiChunyan CaoPeng WeiMengyin XuZhongkuan LiuLingyan LiuYaping ZhongRuohan LiYifeng ZhouTao Yi
Published in: ACS applied materials & interfaces (2019)
Self-assembled nanostructures of amphiphilic peptides have a wide range of applications in bioimaging and delivery systems. In this study, we design and synthesize a biocompatible amphiphilic peptide (C-3) consisting of an RVRRFFF sequence and a nitrobenzoxadiazole fluorophore that can self-assemble into stable micelles for specifically detecting furin, a kind of proprotein convertase with promoting tumor progression. The self-assembly of C-3 with a β-sheet nanostructure is capable of a rapid and specific response to furin in only 5 min in aqueous solution because of the existence of the RVRR motif in the C-3 molecule. The C-3 nanostructures thus can selectively distinguish high furin-expressing cancer cells, like MDA-MB-231 cells, a kind of human breast cancer cells, from normal cells. Furthermore, the C-3 self-assembly can stay in living cells for a long time and are capable of durable detection of intracellular furin, being good for tracer analysis. To our knowledge, this is the first example of self-assembly of a soluble amphiphilic peptide that can selectively detect furin in high furin-expressing live cells.
Keyphrases