Login / Signup

Modeling the Effect of Solvents on Nonradiative Singlet Oxygen Deactivation: Going beyond Weak Coupling in Intermolecular Electronic-to-Vibrational Energy Transfer.

Frederik ThorningFrank JensenPeter R Ogilby
Published in: The journal of physical chemistry. B (2020)
For almost 50 years, attempts have been made to account for the pronounced solvent effect on the lifetime of singlet molecular oxygen, O2(a1Δg). This process is dominated by the O2(a1Δg) → O2(X3Σg-) nonradiative transition. Given the comparatively low O2(a1Δg) excitation energy of ∼7880 cm-1, existing models have been built upon a foundation of electronic-to-vibrational (e-to-v) energy transfer in which C-H and O-H stretching modes in the solvent act as the dominant energy sink. The latter accounts for large H/D solvent isotope effects on the O2(a1Δg) lifetime. However, recent experiments showing a pronounced temperature effect on the O2(a1Δg) lifetime in some solvents reveal limitations in these models. We have developed a general and computationally tenable model that accounts for both temperature and H/D solvent isotope effects on the O2(a1Δg) lifetime. A key feature of our approach is the need to strike a balance in the oxygen-solvent interaction between weak and strong coupling. In the weak coupling limit, the O2(a1Δg) → O2(X3Σg-) transition probability is determined by the overlap of vibrational wave functions, and this is the main component defining the H/D isotope effects. In the strong coupling limit, the transition probability is determined by an activated process and thus accounts for the observed temperature dependence. In addition to resolving a long-standing oxygen-dependent problem, our model may provide useful insights into a wide range of bimolecular interactions that involve e-to-v energy transfer.
Keyphrases
  • energy transfer
  • ionic liquid
  • room temperature
  • quantum dots
  • solar cells
  • deep learning
  • high resolution
  • electron transfer
  • mass spectrometry
  • molecular dynamics simulations