Login / Signup

Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure.

Sheng ChenYijia SongFeng Xu
Published in: ACS applied materials & interfaces (2018)
Recently, cellulose paper based materials have emerged for applications in wearable "green" electronics due to their earth abundance, low cost, light weight, flexibility, and sustainability. Herein, for the first time, we develop an almost all cellulose paper based pressure sensor through a facile, cost-effective, scalable, and environment-friendly approach. The screen-printed interdigital electrodes on the flat printing paper and the carbonized crepe paper (CCP) with good conductivity are integrated into a flexible pressure sensor as substrates and active materials, respectively. The porous and corrugated structure of the CCP endows the pressure sensor with high sensitivity (2.56-5.67 kPa-1 in the range of 0-2.53 kPa), wide workable pressure range (0-20 kPa), fast response time (<30 ms), low detection limit (∼0.9 Pa), and good durability (>3000 cycles). Additionally, we demonstrate the practical applications of the CCP pressure sensor in detection of finger touching, wrist pulse, respiration, phonation, acoustic vibration, etc., and real-time monitoring of spatial pressure distribution. The proposed CCP pressure sensor has great potentials in various applications as wearable electronics. Moreover, the subtle fabrication of the desired materials based on commercially available products provides new insights into the development of green electronics.
Keyphrases