Login / Signup

Predation yields greater population performance: What are the contributions of density- and trait-mediated effects?

Joseph T NealeSteven A Juliano
Published in: Ecological entomology (2020)
1. Population responses to extrinsic mortality can yield no change in number of survivors (compensation) or an increase in number of survivors (overcompensation) when the population is regulated by negative density-dependence. This intriguing response has been the subject of theoretical studies, but few experiments have explored how the source of extrinsic mortality affects the response. 2. This study tests abilities of three functionally diverse predators, alone and combined, to induce (over)compensation of a prey population. Larval Aedes aegypti (Diptera: Culicidae) were exposed to predation by Mesocyclops longisetus (Crustacea: Copepoda), Anopheles barberi (Diptera: Culicidae), Corethrella appendiculata (Diptera: Corethrellidae), all three in a substitutive design, or no predation. 3. The number of survivors to adulthood, female size and development time, and a composite index of performance (r') were analysed. Predator treatment did not have a significant effect on total number of survivors, nor on number of males, suggesting mortality by predation was compensatory. Predation significantly affected number of female survivors, with a trend of more females produced with predation, though no post hoc tests were significant. Predation significantly increased female development rate and r' relative to no-predator control. 4. A sensitivity analysis indicated that the change in the number of female adults produced was the largest contributing factor to the differences in r' among cohorts. While predation did not significantly increase overall production of adults, it did release survivors from density-dependent effects sufficiently to increase population performance. This study provides an empirical test of mechanisms by which predation may yield positive effects on a population of victims, a phenomenon predicted to occur across many taxa and food webs.
Keyphrases
  • young adults
  • aedes aegypti
  • cardiovascular events
  • depressive symptoms
  • gene expression
  • risk assessment
  • dna methylation
  • dengue virus
  • combination therapy
  • human health