Nanoparticle Scanners for the Identification of Key Sequences Involved in the Assembly and Disassembly of β-Amyloid Peptides.
Milad ZangiabadiAvijit GhoshYan ZhaoPublished in: ACS nano (2023)
The aggregation of β-amyloid peptides (Aβ), implied in the development and progression of Alzheimer's disease, is driven by a complex set of intramolecular and intermolecular interactions involving both hydrophobic and polar residues. The key residues responsible for the forward assembling process may be different from those that should be targeted to disassemble already formed aggregates. Molecularly imprinted nanoparticle (MINP) receptors are reported in this work to strongly and selectively bind specific segments of Aβ 40 . Combined fluorescence spectroscopy, atomic force microscopy (AFM) imaging, and circular dichroism (CD) spectroscopy indicate that binding residues 21-30 near the loop region is most effective at inhibiting the aggregation of monomeric Aβ 40 , but residues 11-20 that include the internal β strand closer to the N-terminal represent the best target for disaggregating already formed aggregates in the polymerization phase. Once the aggregation proceeds to the saturation phase, binding residues 1-10 has the largest effect on the disaggregation, likely because of the accessibility of these amino acids relative to others to the MINP receptors.