Login / Signup

Giant photon momentum locked THz emission in a centrosymmetric Dirac semimetal.

Liang ChengYing XiongLixing KangYu GaoQing ChangMengji ChenJingbo QiHyunsoo YangZheng LiuJustin C W SongElbert E M Chia
Published in: Science advances (2023)
Strong second-order optical nonlinearities often require broken material centrosymmetry, thereby limiting the type and quality of materials used for nonlinear optical devices. Here, we report a giant and highly tunable terahertz (THz) emission from thin polycrystalline films of the centrosymmetric Dirac semimetal PtSe 2 . Our PtSe 2 THz emission is turned on at oblique incidence and locked to the photon momentum of the incident pump beam. Notably, we find an emitted THz efficiency that is giant: It is two orders of magnitude larger than the standard THz-generating nonlinear crystal ZnTe and has values approaching that of the noncentrosymmetric topological material TaAs. Further, PtSe 2 THz emission displays THz sign and amplitude that is controlled by the incident pump polarization and helicity state even as optical absorption is only weakly polarization dependent and helicity independent. Our work demonstrates how photon drag can activate pronounced optical nonlinearities that are available even in centrosymmetric Dirac materials.
Keyphrases
  • high resolution
  • high speed
  • cardiovascular disease
  • living cells
  • solid state
  • risk factors
  • type diabetes
  • mass spectrometry
  • single molecule
  • fluorescent probe