Login / Signup

Analysis of Cysteine Post Translational Modifications Using Organic Mercury Resin.

Paschalis-Thomas DouliasNeal S Gould
Published in: Current protocols in protein science (2018)
The wide reactivity of the thiol group enables the formation of a variety of reversible, covalent modifications on cysteine residues. S-nitrosylation, like many other post-translational modifications, is site selective, reversible, and necessary for a wide variety of fundamental cellular processes. The overall abundance of S-nitrosylated proteins and reactivity of the nitrosyl group necessitates an enrichment strategy for accurate detection with adequate depth. Herein, a method is presented for the enrichment and detection of endogenous protein S-nitrosylation from complex mixtures of cell or tissue lysate utilizing organomercury resin. Minimal adaptations to the method also support the detection of either S-glutathionylation or S-acylation using the same enrichment platform. When coupled with high accuracy mass spectrometry, these methods enable a site-specific level of analysis, facilitating the curation comparable datasets of three separate cysteine post-translational modifications. © 2018 by John Wiley & Sons, Inc.
Keyphrases