Login / Signup

Ecological Interactions of Predatory Mites, Cheyletus eruditus (Schrank) (Trombidiformes: Cheyletidae) and Cheyletus malaccensis Oudemans, and Prey, Liposcelis decolor (Pearman) (Psocodea: Liposcelididae), under Different Thermo-Hygrometric Regimes.

James K DansoGeorge P OpitKristopher L GilesBruce Howard Noden
Published in: Insects (2023)
Predator-prey interactions are linked through trophic relationships, and individual population dynamics are a function of multiple interactions among many ecological factors. The present study considered the efficacy of the predatory mites Cheyletus eruditus (Schrank) (Trombidiformes: Cheyletidae) and Cheyletus malaccensis Oudemans to manage Liposcelis decolor (Pearman) (Psocodea: Liposcelididae). Prey population suppression and progeny replacement efficiency of the predators were assessed under different predator-prey ratios (0:20, 1:20, 2:20, 4:20, and 10:20), temperatures (20, 24, 28, and 32 °C), and relative humidities (RH) (63, 75, and 85%) over 40 days under laboratory conditions of 0:24 (L:D) photoperiod. Suppression of L. decolor population when C. eruditus -related predator-to-prey ratios of 1:20, 2:20, 4:20, and 10:20 were used was ~61.7, 79.7, 85.1, and 87.5%, respectively, relative to the Control ratio (0:20). In the case of C. malaccensis , suppression of 70, 82.1, 92.9, and 96.5%, respectively, was achieved. Although the low 63% RH limited efficacy of these cheyletid mites, both predatory mites caused pest population suppression of ~67.1-97.2% and increased their progeny by ~96.7-844.4% fold for the predator-prey ratios of 1:20, 2:20, 4:20, and 10:20, temperatures of 20, 24, 28, and 32 °C, and RH levels of 63, 75, and 85%. The levels of psocid population suppression achieved indicate the potential of both predatory mites for psocid management.
Keyphrases