Login / Signup

Pillar[5]-bis-trithiacrown: Influence of Host-Guest Interactions on the Formation of Coordination Networks.

Mingyeong ShinSeulgi KimEunji LeeJong-Hwa JungIn Hyeok ParkShim Sung Lee
Published in: Inorganic chemistry (2021)
A pillar[5]-bis-trithiacrown (L) capable of metal binding and organic guest threading simultaneously has been employed, and the influence of dinitrile guests [CN(CH2)nCN (n = 2-6: abbreviated C2-C6)] on the coordination behaviors has been investigated. When the ditopic ligand L was reacted with HgCl2 in the presence of the C2-C6 guests, the shorter guests C2 and C3 afforded a two-dimensional coordination polymer [Hg7Cl14(C2@L)2]n (1) and a one-dimensional coordination polymer [(Hg3Cl6)2(C3@L)2]n (2), respectively. In 1 and 2, each dinitrile guest threads into the pillararene cavity to form a C2@L or C3@L unit via the host-guest interaction. Further linking of these units by exocyclic Hg-S bonds and anion coordination lead to the formation of coordination products with different dimensionalities. While the use of the longer guests C4-C6 under the same reactions yielded a discrete dimercury(II) complex 3, [Hg2Cl4(CH3CN@L)] which contains one acetonitrile solvent molecule because the longer dinitriles do not serve as effective guests. In the NMR and UV-vis studies, the association constants (log K1:1) for the host-guest interactions of L with the dinitrile guests are C2 (4.75) > C3 (4.17) ≫ C4 (2.85) > C5 (2.45) > C6 (too small), indicating that the shorter guests C2 or C3 interact more strongly than longer ones due to the confined interior space of L. Taken collectively, the C2 and C3 guests with proper size-matching promote the formation of coordination polymers and vice versa, suggesting that the guest size could be a controlling factor.
Keyphrases
  • water soluble
  • ionic liquid
  • fluorescent probe
  • living cells
  • room temperature
  • atomic force microscopy
  • single molecule
  • dna binding