Login / Signup

Effects of Different Scratch Mat Designs on Hen Behaviour and Eggs Laid in Enriched Cages.

Victoria SandilandsLaurence BakerJo DonbavandSarah Brocklehurst
Published in: Animals : an open access journal from MDPI (2021)
Laying hens in the UK and EU must be provided with litter for pecking and scratching. In enriched cages, this is commonly provided by dispensing layer's feed onto a scratch mat. Mats vary in design and size, which might affect hen behaviour and egg quality, since eggs are sometimes laid at the mats. We investigated if four different scratch mats (BD, K, V, Z) provided to hens in enriched cages resulted in differences in behaviour on the mats and external egg quality. Twenty-four 60-bird cages (6 cages/bank × 4 banks) with 2 mats/cage at one tier of a commercial enriched cage unit were used. Mats were allocated to cages in a balanced design prior to the flock arriving. Hens and eggs were studied at 30, 50 and 79 weeks of age, with three behaviour observations (before, during or after scratch feed application). The data were analysed by GLMMs or LMMs. The vast proportions of birds on the mats were standing (0.720) or sitting (0.250). Bird proportions on the mats were low overall and declined from 0.028 (30 weeks) and 0.030 (50 weeks) to 0.020 (79 weeks) (p < 0.001). The greatest proportion of hens were observed on Z (p < 0.001), which had the largest area, but relative to the available area least birds were on Z and most were on K (p < 0.001). Foraging was not affected by bird age or mat type but was greater at the second observation (p < 0.001). Most eggs were laid in the nest box and were clean. Clean eggs declined, and dirty eggs increased, significantly with age, particularly at the scratch mat (p < 0.001). Dirty eggs were not affected by mat design. Cracked eggs were highest at 79 weeks of age, particularly with BD mats (p < 0.001). Overall, scratch mat designs had minimal effects on behaviour (but few hens were seen there) and egg quality.
Keyphrases
  • heat stress
  • gestational age
  • high resolution
  • big data
  • single molecule