Thrombospondin type 1 repeat-derived C-mannosylated peptide attenuates synaptogenesis of cortical neurons induced by primary astrocytes via TGF-β.
Kazuchika NishitsujiMidori IkezakiShino ManabeKenji UchimuraYukishige ItoYoshito IharaPublished in: Glycoconjugate journal (2021)
C-Mannosylation is a rare type of protein glycosylation and is reportedly critical for the proper folding and secretion of parental proteins. Still, the effects of C-mannosylation on the biological functions of these modified proteins remain to be elucidated. The Trp-x-x-Trp (WxxW) sequences, whose first tryptophan (Trp) can be C-mannosylated, constitute the consensus motifs for this glycosylation modification and are commonly found in thrombospondin type 1 repeats that regulate molecular functions of thrombospondin 1 in binding and activation of transforming growth factor β (TGF-β). TGF-β plays critical roles in the control of the central nervous system including synaptogenesis. Here, we investigated whether C-mannosylation of the synthetic Trp-Ser-Pro-Trp (WSPW) peptide may confer certain functions to this peptide in TGF-β-mediated synaptogenesis. By using primary cultured rat astrocytes and cortical neurons, we found that the C-mannosylated WSPW (C-Man-WSPW) peptide, but not non-mannosylated WSPW peptide, suppressed astrocyte-conditioned medium (ACM)-stimulated synaptogenesis. C-Man-WSPW peptide inhibited both ACM- and recombinant mature TGF-β1-induced activations of Smad 2, an important mediator in TGF-β signaling. Interactions of recombinant mature TGF-β with the C-Man-WSPW peptide were similar to those with non-C-mannosylated WSPW peptide. Taken together, our results reveal a novel function of C-mannosylation of the WxxW motif in signaling and synaptogenesis mediated by TGF-β. Molecular details of how C-mannosylation affects the biological functions of WxxW motifs deserve future study for clarification.