Involvement of Rac1 in macrophage activation by brain-derived neurotrophic factor.
Shinya SasakiKatsuhiro TakedaKazuhisa OuharaSatomi ShirawachiMikihito KajiyaShinji MatsudaShoko KonoHideki ShibaHidemi KuriharaNoriyoshi MizunoPublished in: Molecular biology reports (2021)
Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation, which directs the quality of tissue repair. This study aimed to investigate the effect of BDNF on the phagocytic activity of RAW264.7 cells. In addition, we studied the effect of BDNF on guanosine triphosphatase (GTP)-RAS-related C3 botulinus toxin substrate (Rac)1 and phospho-Rac1 levels in RAW264.7 cells. Rac1 inhibitor inhibited BDNF-induced phagocytosis of latex-beads. In addition, BDNF enhanced Porphyromonas gingivalis (Pg) phagocytosis by RAW264.7 cells as well as latex-beads. We demonstrated for the first time that BDNF enhances phagocytic activity of RAW264.7 cells through Rac1 activation. The present study proposes that BDNF may reduce inflammatory stimuli during BDNF-induced periodontal tissue regeneration through enhanced phagocytic activity of macrophages.