Login / Signup

Color-Tunable and Stimulus-Responsive Luminescent Liquid Crystalline Polymers Fabricated by Hydrogen Bonding.

Lei TaoMing-Li LiKai-Peng YangYan GuanPing WangZhihao ShenHe-Lou Xie
Published in: ACS applied materials & interfaces (2019)
Luminescent liquid crystalline polymers (LLCPs) show extensive application potentials, such as liquid crystal displays and circularly polarized luminescence. In this work, we employ a hydrogen-bonding strategy different from the traditional covalent-bonding method to fabricate LLCPs. First, the acceptor and donor of hydrogen bonding, (4,4'-dibutanoxy tetraphenylethylene)-1-pyridine (PTPEC4) and poly(2-vinyl terephthalic acid) (PPA), respectively, are successfully synthesized. Then, mixtures with different molar ratios ( x's) of PTPEC4 to PPA are used to prepare a series of LLCPs [denoted as PPA(PTPEC4) x]. The resultant LLCPs show a smectic A phase ( x ≥ 0.8), a columnar nematic phase (0.6 ≤ x ≤ 0.05), and an amorphous state ( x = 0.025), depending on the x value. Meanwhile, all polymers exhibit typical aggregation-induced emission behavior. More interestingly, with the variation of the PTPEC4 content, the series of LLCPs show different colors, that is, the emission peak red shifts from 510 nm ( x = 1.0) to 551 nm ( x = 0.025). Furthermore, because of the reversible protonation effect of the N atom of pyridine in PTPEC4 by the strong proton acid, PPA(PTPEC4) x shows reversible color transformation. This work provides a new method to construct LLCPs with different emission colors and reversible color transformation.
Keyphrases
  • energy transfer
  • light emitting
  • room temperature
  • ionic liquid
  • quantum dots
  • solid state
  • photodynamic therapy
  • sensitive detection
  • cancer therapy
  • molecular dynamics
  • drug delivery