Efficient manifolds tracing for planar maps.
David CiroIberê L CaldasRicardo L VianaTodd E EvansPublished in: Chaos (Woodbury, N.Y.) (2018)
In this work, we introduce an exact calculation method and an approximation technique for tracing the invariant manifolds of unstable periodic orbits of planar maps. The exact method relies on an adaptive refinement procedure that prevents redundant calculations occurring in other approaches, and the approximated method relies on a novel interpolation approach based on normal displacement functions. The resulting approximated manifold is precise when compared to the exact one, and its relative computational cost falls like the inverse of the manifold length. To present the tracing method, we obtain the invariant manifolds of the Chirikov-Taylor map, and as an application we illustrate the transition from homoclinic to heteroclinic chaos in the Duffing oscillator that leads from localized chaos to global chaotic motion.