Login / Signup

Asn57 N-glycosylation promotes the degradation of hemicellulose by β-1,3-1,4-glucanase from Rhizopus homothallicus.

Zi-Qian ZhaShuai YouYang-Hao HuFang ZhangYi-Wen ChenJun Wang
Published in: Environmental science and pollution research international (2022)
N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as a substrate, and β-glucan is hemicellulose that is abundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its T m value and catalytic efficiency by 5.1 °C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4 °C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of β-glucan in hemicellulose.
Keyphrases
  • gene expression
  • genome wide
  • crystal structure
  • climate change
  • copy number