Login / Signup

Influence of Sodium Hypochlorite Treatment on Pore Size Distribution of Polysulfone/Polyvinylpyrrolidone Membranes.

George DibrovGeorge KagramanovVladislav SudinEvgenia A GrushevenkoAlexey YushkinAlexey Volkov
Published in: Membranes (2020)
This work was focused on the study of hypochlorite treatment on the pore size distribution of membranes. To this end, ultrafiltration membranes from a polysulfone/polyvinylpyrrolidone blend with a sponge-like structure were fabricated and exposed to hypochlorite solutions with different active chlorine concentrations for 4 h at ambient temperature. Liquid-liquid displacement and scanning electron microscopy were employed to study the limiting and surface pores, respectively. After treatment with 50 ppm hypochlorite solution at pH = 7.2, a five-fold increase in water permeance up to 1400 L/(m2·h·bar) was observed, accompanied by a 40% increase in the limiting pore sizes and almost a three-fold increase in the porosity. After 5000 ppm treatment at pH = 11.5, a 40% rise in the maximum limiting pore size and almost a two-fold increase in the porosity and permeance was observed, whereas the mean pore size was constant. Apparently, changes in the membrane structure at pH = 11.5 were connected with polyvinylpyrrolidone (PVP) degradation and wash-out, whereas at lower pH and despite lower active chlorine concentration, this process was coupled with polysulfone (PSf) destruction and removal.
Keyphrases
  • electron microscopy
  • drinking water
  • high resolution