Login / Signup

Complex Formation in the Sulfobetaine-Containing Entirely Ionic Block Copolymer/Ionic Homopolymer System and Their Temperature Responsivity.

Dongwook KimHideki MatsuokaYoshiyuki Saruwatari
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
The behavior of micelle formation in the sulfobetaine-containing entirely ionic block copolymer/ionic homopolymer system and its functional expression (temperature responsivity) were investigated. Poly(sulfopropyl dimethylammonium propylacrylamide) was used as the sulfobetaine, poly[3-(methacrylamido)propyl trimethylammonium chloride] was used as the cationic polymer, and poly(p-styrenesulfonic acid sodium salt) was used as the anionic polymer. The changes in transition temperature with the concentration and the behavior of micelle formation in the block-/cationic homopolymer and block-/anionic homopolymer system were compared and examined by transmittance, dynamic light scattering, atomic force microscopy, and 1H nuclear magnetic resonance. Only block-/cationic homopolymer systems with a core-shell (polyion complex-sulfobetaine) structure showed temperature responsivity of upper critical solution temperature type, and the responsiveness was dependent on the concentration. On the other hand, the block-/anionic homopolymer system had a core-shell structure at a concentration of 0.05 wt %, but temperature responsiveness was not observed at this concentration. At higher concentrations, electrostatic attraction caused the anionic homopolymer and block copolymer to interact as a whole, resulting in a loss of responsiveness. When the ionic homopolymer had a higher degree of polymerization than the sulfobetaine, it could not form a core-shell structure by interacting with the sulfobetaine and ionic polymer moieties of the block copolymer, thus resulting in the loss of responsiveness. The block-/ionic homopolymer system prepared by the reforming method through dialysis formed uniform and small micelles but lost responsiveness due to morphological stability and electrostatic interaction between the block copolymer and ionic homopolymer.
Keyphrases
  • ionic liquid
  • magnetic resonance
  • atomic force microscopy
  • solid state
  • drug release
  • magnetic resonance imaging
  • drug delivery
  • high speed
  • chronic kidney disease
  • high resolution