Rotational Locomotion of an Active Gel Driven by Internal Chemical Signals.
Jing WangLin RenRui TengIrving R EpsteinHui WangMeng ZhangLing YuanQing-Yu GaoPublished in: The journal of physical chemistry letters (2021)
Chemical waves arising from coupled reaction and transport can serve as biomimetic "nerve signals" to study the underlying origin and regulation of active locomotion. During wave propagation in more than one spatial dimension, the propagation direction of spiral and pulse waves in a nanogel-based PAAm self-oscillating gel, i.e., the orientation of the driving force, may deviate from the normal direction to the wave fronts. Alternating forward and backward retrograde wave locomotion along the normal and tangential kinematic vectors with a phase difference leads to a curved path, i.e., rotational locomotion. This work indicates that appendages in an organism are not required for this type of locomotion. This locomotion mechanism reveals a general principle underlying the dynamical origin of biological helical locomotion and also suggests design approaches for complex locomotion of soft robots and smart materials.