Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt.
Jitang ChenYang YangJianwei SuPeng JiangGuoliang XiaQianwang ChenPublished in: ACS applied materials & interfaces (2017)
The hydrogen evolution reaction highly relied on Pt electrocatalysts, with high activity and stability. In the past few years, a host of efforts have been made in the development of novel platinum nanostructures with a low amount of Pt because the scarcity and high price of Pt hinder its practical applications. Here, we report the preparation of PtCoFe@CN electrocatalysts with a remarkably reduced Pt loading amount of 4.60% by annealing Pt-doped metal-organic frameworks (MOFs). The electrocatalyst demonstrated an outstanding performance with only 45 mV overpotential to achieve the 10 mA cm-2 current density, which is quite close to that of the commercial 20% Pt/C catalyst. The enhanced catalytic capability is originated from the modification of the electronic structures of CoFe by alloying with Pt. The results indicate that robust and superstable alloy electrocatalysts which contain a very small amount of noble metal could be prepared by annealing noble metal-doped MOFs.