Login / Signup

Resetting induced multimodality.

Przemysław PogorzelecBartłomiej Dybiec
Published in: Chaos (Woodbury, N.Y.) (2023)
Properties of stochastic systems are defined by the noise type and deterministic forces acting on the system. In out-of-equilibrium setups, e.g., for motions under action of Lévy noises, the existence of the stationary state is not only determined by the potential but also by the noise. Potential wells need to be steeper than parabolic in order to assure the existence of stationary states. The existence of stationary states, in sub-harmonic potential wells, can be restored by stochastic resetting, which is the protocol of starting over at random times. Herein, we demonstrate that the combined action of Lévy noise and Poissonian stochastic resetting can result in the phase transition between non-equilibrium stationary states of various multimodality in the overdamped system in super-harmonic potentials. Fine-tuned resetting rates can increase the modality of stationary states, while for high resetting rates, the multimodality is destroyed as the stochastic resetting limits the spread of particles.
Keyphrases
  • liquid chromatography
  • air pollution
  • molecular dynamics
  • mass spectrometry
  • human health
  • molecular dynamics simulations
  • risk assessment
  • high glucose
  • endothelial cells
  • stress induced