Login / Signup

Polymorphism of glutathione S-transferase P1 of dogs with mammary tumours.

Oleh M FedetsKostyantyn V DmytrukLukasz AdaszekIryna M KurlyakOlena V DmytrukUrszula LisieckaStanislaw Winiarczyk
Published in: Veterinary and comparative oncology (2023)
Mammary tumours constitute more than half of neoplasms in female dogs from different countries. Genome sequences are associated with cancer susceptibility but there is little information available about genetic polymorphisms of glutathione S-transferase P1 (GSTP1) in canine cancers. The aim of this study was to find single nucleotide polymorphisms (SNPs) in GSTP1 of dogs (Canis lupus familiaris) with mammary tumours compared to healthy dogs and to determine the association between GSTP1 polymorphisms and the occurrence of these tumours. The study population included 36 client-owned female dogs with mammary tumours and 12 healthy female dogs, with no previous diagnosis of cancer. DNA was extracted from blood and amplified by PCR assay. PCR-products were sequenced by Sanger method and analysed manually. The 33 polymorphisms were found in GSTP1: 1 coding SNP (exon 4), 24 non-coding SNPs (9 in exon 1), 7 deletions and 1 insertion. The 17 polymorphisms have been found in introns 1, 4, 5 and 6. The dogs with mammary tumours have significant difference from healthy in SNPs I4 c.1018 + 123 T > C (OR 13.412, 95%CI 1.574-114.267, P = .001), I5 c.1487 + 27 T > C (OR 10.737, 95%CI 1.260-91.477, P = .004), I5 c.1487 + 842 G > C (OR 4.714, 95% CI 1.086-20.472, P = .046) and I6 c.2481 + 50 A > G (OR 12.000, 95% CI 1.409-102.207, P = .002). SNP E5 c.1487 T > C and I5 c.1487 + 829 delG also differed significantly (P = .03) but not to the confidence interval. The study, for the first time, showed a positive association of SNPs in GSTP1 with mammary tumours of dogs, that can possibly be used to predict the occurrence of this pathology.
Keyphrases
  • genome wide
  • risk assessment
  • high throughput
  • circulating tumor
  • single molecule
  • health information
  • squamous cell
  • high density