Login / Signup

Molecular simulations on the stability and dynamics of bulk nanobubbles in aqueous environments.

Yi LuLei YangYangmin KuangYongchen SongJiafei ZhaoAmadeu K Sum
Published in: Physical chemistry chemical physics : PCCP (2021)
Nanobubbles have attracted significant attention due to their unexpectedly long lifetimes and stabilities in liquid solutions. However, explanations for the unique properties of nanobubbles at the molecular scale are somewhat controversial. Of special interest is the validity of the Young-Laplace equation in predicting the inner pressure of such bubbles. In this work, large-scale molecular dynamics simulations were performed to study the stability and diffusion of nanobubbles of methane in water. Two types of force field, atomistic and coarse-grained, were used to compare the calculated results. In accordance with predictions from the Young-Laplace equation, it was found that the inner pressure of the nanobubbles increased with decreasing nanobubble size. Consequently, a large pressure difference between the nanobubble and its surroundings resulted in the high solubility of methane molecules in water. The solubility was considered to enable nanobubble stability at exceptionally high pressures. Smaller bubbles were observed to be more mobile via Brownian motion. The calculated diffusion coefficient also showed a strong dependence on the nanobubble size. However, this active mobility of small nanobubbles also triggered a mutable nanobubble shape over time. Nanobubbles were also found to coalesce when they were sufficiently close. A critical distance between two nanobubbles was thus identified to avoid coalescence. These results provide insight into the behavior of nanobubbles in solution and the mechanism of their unique stability while withstanding high inner pressures.
Keyphrases
  • molecular dynamics simulations
  • molecular dynamics
  • molecular docking
  • magnetic resonance imaging
  • middle aged
  • magnetic resonance
  • working memory
  • high resolution