Login / Signup

Green Synthesising ZnO Nanoparticle Using Sesbania grandiflora and Their Evaluation of Anti-diabetic Anti-advanced Glycation End Products and Cytotoxic Effects.

Kanagavalli RamasubbuVijayarangan Devi Rajeswari
Published in: Applied biochemistry and biotechnology (2023)
Nanotechnology is an emerging area of science with diverse implementations, including medicine and drug delivery. Often for drug delivery, nanoparticles and nanocarriers were used. Diabetes mellitus is a metabolic disease with numerous complications, including advanced glycation end products (AGEs). AGEs advance neurodegeneration, obesity, renal dysfunction, retinopathy, and many more. Here, we have used zinc oxide nanoparticles synthesised with Sesbania grandiflora (hummingbird tree). ZnO nanoparticles and S. grandiflora are known for their biocompatibility and medicinal property, such as anti-cancer, anti-microbial, anti-diabetic, and anti-oxidant. So, we analysed the anti-diabetic, anti-oxidant, anti-AGEs, and cytotoxic effects of green synthesised and characterised ZnO nanoparticles with S. grandiflora (SGZ) and the leaf extract of S. grandiflora. Characterisation results indicated the synthesis of ZnO Nps at maximum concentration; the anti-oxidant assay showed 87.5% free radicle scavenging with DPPH. Additionally, anti-diabetic (72% α-amylase and 65% of α-glucosidase inhibition) and cell viability also exhibited promising results. In conclusion, SGZ can reduce the absorption of carbohydrates from the diet, elevate glucose uptake, and prevent protein glycation. So, it could be a potential tool for treating diabetes, hyperglycemia, and AGE-related diseases.
Keyphrases
  • drug delivery
  • type diabetes
  • skeletal muscle
  • oxide nanoparticles
  • insulin resistance
  • oxidative stress
  • body mass index
  • adipose tissue
  • climate change
  • walled carbon nanotubes