Login / Signup

Circularly Polarized Luminescence Switching Driven by Precisely Tuned Supramolecular Interactions: From Hydrogen Bonding to π-π Interaction.

Zijian GuWenyue MaJun FengZhaoyang LiuBin XuWenjing Tian
Published in: The journal of physical chemistry letters (2023)
It is highly challenging to achieve circularly polarized luminescence (CPL) switching by precisely tuning supramolecular interactions and unveiling the mechanism of supramolecular chirality inversion. Herein, we demonstrated CPL switching based on diethyl l-glutamate-9-cyanophenanthrene (LGCP) and diethyl l-glutamate-pyrene (LGP) via the precise regulation of supramolecular interactions. LGCP assembly driven by hydrogen bonding showed right CPL, while LGP assembly driven by π-π interaction led to left CPL. Remarkably, significant CPL switching was observed from the assemblies of LGCP/octafluoronaphthalene (OFN), attributed to the alteration of the dominating interaction from weak hydrogen bonding to rather strong π-π interaction, while the assemblies of LGP/OFN exhibited minimum CPL variation because the dominating π-π interaction within the assembly of LGP/OFN illustrated quite limited variations upon arene-perfluoroarene interaction. This work provides a feasible strategy toward the efficient modulation of the chiroptical properties of multiple component supramolecular systems, meanwhile offering possibilities for the mechanism exploration of the chirality inversion of supramolecular assemblies.
Keyphrases
  • energy transfer
  • water soluble
  • magnetic resonance imaging
  • quantum dots
  • computed tomography