KCTD15 is overexpressed in human childhood B-cell acute lymphoid leukemia.
Giovanni SmaldoneGiuliana BeneduceMariarosaria IncoronatoKatia PaneMonica FranzeseLuigi CoppolaAngela CordellaRosanna ParasoleMimmo RipaldiGiovanni NassaAndrea SoricelliLuigi VitaglianoPeppino MirabelliMarco SalvatorePublished in: Scientific reports (2019)
Leukemic cells originate from the malignant transformation of undifferentiated myeloid/lymphoid hematopoietic progenitors normally residing in bone marrow. As the precise molecular mechanisms underlying this heterogeneous disease are yet to be disclosed, the identification and the validation of novel actors in leukemia is of extreme importance. Here, we show that KCTD15, a member of the emerging class of KCTD ((K)potassium Channel Tetramerization Domain containing) proteins, is strongly upregulated in patients affected by B-cell type acute lymphoblastic leukemia (B-ALL) and in continuous cell lines (RS4;11, REH, TOM-1, SEM) derived from this form of childhood leukemia. Interestingly, KCTD15 downregulation induces apoptosis and cell death suggesting that it has a role in cellular homeostasis and proliferation. In addition, stimulation of normal lymphocytes with the pokeweed mitogen leads to increased KCTD15 levels in a fashion comparable to those observed in proliferating leukemic cells. In this way, the role of KCTD15 is likely not confined to the B-ALL pathological state and extends to activation and proliferation of normal lymphocytes. Collectively, data here presented indicate that KCTD15 is an important and hitherto unidentified player in childhood lymphoid leukemia, and its study could open a new scenario for the identification of altered and still unknown molecular pathways in leukemia.
Keyphrases
- bone marrow
- acute myeloid leukemia
- cell death
- induced apoptosis
- cell cycle arrest
- signaling pathway
- acute lymphoblastic leukemia
- mesenchymal stem cells
- allogeneic hematopoietic stem cell transplantation
- end stage renal disease
- endothelial cells
- chronic kidney disease
- early life
- newly diagnosed
- liver failure
- prognostic factors
- peritoneal dialysis
- ejection fraction
- oxidative stress
- minimally invasive
- intensive care unit
- toll like receptor
- protein kinase
- nuclear factor
- induced pluripotent stem cells
- inflammatory response
- deep learning
- aortic dissection