Login / Signup

Probing the Conductive and Tribological Behaviors of Solid Additives in Multiply Alkylated Cyclopentanes for Sliding Electrical Contact.

Zhengfeng CaoQiuyu ShiXiangyu GeShuliang LiuBo WeiTing Wang
Published in: Nanomaterials (Basel, Switzerland) (2022)
Sliding electrical contacts need to be lubricated by conductive lubricants to perform low energy dissipation, high reliability, and long service life. This work studied the thermal stability, anti-corrosion capacity, and conductive, and tribological behaviors of several solid additives in multiply alkylated cyclopentanes (MACs), including carbon nanotubes (CNTs), multilayer graphene (MG), and silver microparticles. The results showed that all the additives possessed favorable thermal stability and corrosion resistance; in particular, CNTs and MG exhibited lower and more stable electrical contact resistance (ECR) and better lubricity abilities than Ag microparticles. Moreover, based on the characterization of the worn surfaces and the film thickness calculation, the favorable conductive and tribological properties of CNTs and MG were related to the high conductivity and specific structure of the additives and the good chemical inertness of MACs.
Keyphrases
  • reduced graphene oxide
  • carbon nanotubes
  • ionic liquid
  • gold nanoparticles
  • tissue engineering
  • room temperature
  • healthcare
  • single molecule
  • biofilm formation
  • highly efficient