Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells.
Xinming LiYanan HouXianke MengChunpo GeHuilong MaJin LiJian-Guo FangPublished in: Angewandte Chemie (International ed. in English) (2018)
Elevated reactive oxygen species and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. As a major regulator of the cellular redox homeostasis, the selenoprotein thioredoxin reductase (TrxR) is increasingly considered as a promising target for anticancer drug development. The current approach to inhibit TrxR predominantly relies on the modification of the selenocysteine residue in the C-terminal active site of the enzyme, in which it is hard to avoid the off-target effects. By conjugating the anticancer drug gemcitabine with a 1,2-dithiolane scaffold, an unprecedented prodrug strategy is disclosed that achieves a specific release of gemcitabine by TrxR in cells. As overexpression of TrxR is frequently found in different types of tumors, the TrxR-dependent prodrugs are promising for further development as cancer chemotherapeutic agents.