Login / Signup

Two-Step Growth of 2D Organic-Inorganic Perovskite Microplates and Arrays for Functional Optoelectronics.

Lei LiJunze LiShangui LanGaoming LinJun WangHaizhen WangYining XuanHongmei LuoDe-Hui Li
Published in: The journal of physical chemistry letters (2018)
Two-dimensional (2D) perovskites have recently attracted intensive interest for their great stability against moisture, oxygen, and illumination compared with their three-dimensional (3D) counterparts. However, their incompatibility with a typical lithography process makes it difficult to fabricate integrated device arrays and extract basic optical and electronic parameters from individual devices. Here, we develop a combination of solution synthesis and a gas-solid-phase intercalation strategy to achieve hexagonal-shaped 2D perovskite microplates and arrays for functional optoelectronics. The 2D perovskite microplates were achieved by first synthesizing the lead iodide (PbI2) microplates from an aqueous solution and then following with intercalation via the vapor transport method. This method further allows us to synthesize arrays of 2D perovskite microplates and create individual 2D perovskite microplate-based photodetectors. In particular, chlorine (Cl) can be efficiently incorporated into the microplates, resulting in significantly improved performance of the 2D perovskite microplate-based photodetectors.
Keyphrases
  • room temperature
  • solar cells
  • high efficiency
  • high density
  • aqueous solution
  • ionic liquid
  • oxidative stress
  • drinking water
  • high speed