Formation of (Aza)fulvenallene, Cyanocyclopentadiene, and (Aza)fluorenes in the Thermal Rearrangements of Indazoles, Azaindazoles, and Homoquinolinic Anhydride.
M Saeed MirzaeiCurt WentrupPublished in: The Journal of organic chemistry (2023)
Flash vacuum pyrolysis (FVP) of pyrazoles and indazoles constitutes a valuable route to carbenes and nitrenes. In this study, we employed M062X and CCSD(T) calculations to provide a mechanistic rationale for the formation of fulvenallene and fluorenes from indazoles and the corresponding formation of azafulvenallene 15 , cyanocyclopentadiene 19 , and azafluorenes, e.g. 45 , from azaindazoles, e.g. 12 , and from homoquinolinic anhydride. The results reveal the importance of initial tautomerization in the pyrazole moiety of 7-azaindazole 12 , which drives the mechanism toward 2-diazo-3-methylene-2,3-dihydropyridine 29 and hence 3-methylene-2,3-dihydropyridin-2-ylidene 26 , followed by Wolff-type ring contraction to 1-azafulvenallene 15 . This path has a calculated activation energy ∼10 kcal/mol lower than that for an alternate route involving ring opening to 3-diazomethylpyridine, dediazotization, and rearrangement of 3-pyridylcarbene to azacycloheptatetraene and phenylnitrene 24 . FVP of 2,5-diphenyltetrazoles and phenyl(pyridyl)tetrazoles leads to nitrile imines, which cyclize to 3-phenylindazoles and -azaindazoles. Nitrogen elimination from these (aza) indazoles results in the formation of (aza) fluorenes, for which two alternate mechanisms are described: route A by rearrangement of (aza) indazoles to diazo(aza)cyclohexadienes and (aza)cyclohexadienylidenes and route B by rearrangement to diaryldiazomethanes and diarylcarbenes. Both paths are energetically feasible, but path A is preferred and corresponds to the azafluorenes obtained experimentally.