Login / Signup

Vole outbreaks may induce a tularemia disease pit that prevents Iberian hare population recovery in NW Spain.

Carlos RoucoJuan José Luque-LarenaMª Dolors VidalFrançois Mougeot
Published in: Scientific reports (2023)
Iberian hare populations have suffered severe declines during recent decades in Spain. Between 1970 and 1990s, a rapid increase in irrigation crop surface in NW Spain (Castilla-y-León region) was followed by a common vole massive range expansion and complete colonization of lowland irrigated agricultural landscapes from mountainous habitats. The subsequent large cyclic fluctuations in abundance of colonizing common voles have contributed to a periodic amplification of Francisella tularensis, the etiological agent that causes human tularemia outbreaks in the region. Tularemia is a fatal disease to lagomorphs, so we hypothesize that vole outbreaks would lead to disease spill over to Iberian hares, increasing prevalence of tularemia and declines among hare populations. Here we report on the possible effects that vole abundance fluctuations and concomitant tularemia outbreaks had on Iberian hare populations in NW Spain. We analysed hare hunting bag data for the region, which has been recurrently affected by vole outbreaks between 1996 and 2019. We also compiled data on F. tularensis prevalence in Iberian hares reported by the regional government between 2007 and 2016. Our results suggest that common vole outbreaks may limit the recovery of hare populations by amplifying and spreading tularemia in the environment. The recurrent rodent-driven outbreaks of tularemia in the region may result in a "disease pit" to Iberian hares: at low host densities, the rate of population growth in hares is lower than the rate at which disease-induced mortality increases with increased rodent host density, therefore, keeping hare populations on a low-density equilibrium. We highlight future research needs to clarify tularemia transmission pathways between voles and hares and confirm a disease pit process.
Keyphrases
  • risk factors
  • machine learning
  • early onset
  • drug induced
  • big data
  • molecular dynamics simulations
  • stress induced
  • nucleic acid