Login / Signup

The F-actin-binding RapGEF GflB is required for efficient macropinocytosis in Dictyostelium.

Hironori InabaKoji YodaHiroyuki Adachi
Published in: Journal of cell science (2017)
Macropinocytosis involves the uptake of large volumes of fluid, which is regulated by various small GTPases. The Dictyostelium discoideum protein GflB is a guanine nucleotide exchange factor (GEF) of Rap1, and is involved in chemotaxis. Here, we studied the role of GflB in macropinocytosis, phagocytosis and cytokinesis. In plate culture of vegetative cells, compared with the parental strain AX2, gflB-knockout (KO) cells were flatter and more polarized, whereas GflB-overproducing cells were rounder. The gflB-KO cells exhibited impaired crown formation and retraction, particularly retraction, resulting in more crowns (macropinocytic cups) per cell and longer crown lifetimes. Accordingly, gflB-KO cells showed defects in macropinocytosis and also in phagocytosis and cytokinesis. F-actin levels were elevated in gflB-KO cells. GflB localized to the actin cortex most prominently at crowns and phagocytic cups. The villin headpiece domain (VHP)-like N-terminal domain of GflB directly interacted with F-actin in vitro Furthermore, a domain enriched in basic amino acids interacted with specific membrane cortex structures such as the cleavage furrow. In conclusion, GflB acts as a key local regulator of actin-driven membrane protrusion possibly by modulating Rap1 signaling pathways.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • signaling pathway
  • endoplasmic reticulum stress
  • oxidative stress
  • cell death
  • mesenchymal stem cells
  • epithelial mesenchymal transition
  • cell migration
  • mass spectrometry