Login / Signup

Substrate-Determined Diastereoselectivity in an Enzymatic Carboligation.

Patrizia LehwaldOlga FuchsLaurence A NafieMichael MüllerSteffen Lüdeke
Published in: Chembiochem : a European journal of chemical biology (2016)
Thiamine diphosphate-dependent enzymes catalyze the formation of C-C bonds, thereby generating chiral secondary or tertiary alcohols. By the use of vibrational circular dichroism (VCD) spectroscopy we studied the stereoselectivity of carboligations catalyzed by YerE, a carbohydrate-modifying enzyme from Yersinia pseudotuberculosis. Conversion of the non-physiological substrate (R)-3-methylcyclohexanone led to an R,R-configured tertiary alcohol (diastereomeric ratio (dr) >99:1), whereas the corresponding reaction with the S enantiomer gave the S,S-configured product (dr>99:1). This suggests that YerE-catalyzed carboligations can undergo either an R- or an S-specific pathway. We show that, in this case, the high stereoselectivity of the YerE-catalyzed reaction depends on the substrate's preference to acquire a low-energy conformation.
Keyphrases