Login / Signup

Extending Fluorescence of meso-Aryldipyrrin Indium(III) Complexes to Near-Infrared Regions via Electron Withdrawing or π-Expansive Aryl Substituents.

Levi LystromManoj K ShuklaWenfang SunSvetlana V Kilina
Published in: The journal of physical chemistry letters (2021)
The absorption and fluorescence spectra of 14 In(III) dipyrrin-based complexes are studied using time-dependent density functional theory (TDDFT). Calculations confirm that both heteroatom substitution of oxygen (N2O2-type) by nitrogen (N4-type) in dipyrrin ligand and functionalization at the meso-position by aromatic rings with strong electron-withdrawing (EW) substituents or extended π-conjugation are efficient tools in extending the fluorescence spectra of In(III) complexes to the near-infrared (NIR) region of 750-960 nm and in red-shifting the lowest absorption band to 560-630 nm. For all complexes, the emissive singlet state has π-π* character with a small addition of intraligand charge transfer (ILCT) contributing from the meso-aryl substituents to the dipyrrin ligand. Stronger EW nitro group on the meso-phenyl or meso-aryl group with extended π-conjugation induces red-shifted electronic absorption and fluorescence. More tetrahedral geometry of the complexes with N4-type ligands leads to less intensive but more red-shifted fluorescence to NIR, compared to the corresponding complexes with N2O2-type ligands that have a more planar geometry.
Keyphrases
  • density functional theory
  • energy transfer
  • single molecule
  • photodynamic therapy
  • molecular dynamics
  • fluorescence imaging
  • fluorescent probe
  • quantum dots
  • drug release
  • solar cells