Auditory evoked potentials in adolescents with autism: An investigation of brain development, intellectual impairment, and neural encoding.
Sophie SchwartzLe WangSofia UribeBarbara G Shinn-CunninghamHelen Tager-FlusbergPublished in: Autism research : official journal of the International Society for Autism Research (2023)
Limited research has evaluated neural encoding of sounds from a developmental perspective in individuals with autism (ASD), especially among those with intellectual disability. We compared auditory evoked potentials (AEPs) in autistic adolescents with a wide range of intellectual abilities (n = 40, NVIQ 30-160) to both age-matched cognitively able neurotypical adolescent controls (NT-A, n = 37) and younger neurotypical children (NT-C, n = 27) to assess potential developmental delays. In addition to a classic measure of peak amplitude, we calculated a continuous measure of intra-class correlation (ICC) between each adolescent participant's AEP and the age-normative, average AEP waveforms calculated from NT-C and NT-A to study differences in signal morphology. We found that peak amplitudes of neural responses were significantly smaller in autistic adolescents compared to NT-A. We also found that the AEP morphology of autistic adolescents looked more like NT-A peers than NT-C but was still significantly different from NT-A AEP waveforms. Results suggest that AEPs of autistic adolescents present differently from NTs, regardless of age, and differences cannot be accounted for by developmental delay. Nonverbal intelligence significantly predicted how closely each adolescent's AEP resembled the age-normed waveform. These results support an evolving theory that the degree of disruption in early neural responses to low-level inputs is reflected in the severity of intellectual impairments in autism.