Versatile Synthetic Route for β-Functionalized Chlorins and Porphyrins by Varying the Size of Michael Donors: Syntheses, Photophysical, and Electrochemical Redox Properties.
Nivedita ChaudhriNitika GroverMuniappan SankarPublished in: Inorganic chemistry (2017)
One-pot facile synthesis and characterization of novel β-substituted meso-tetraphenylporphyrins and/or chlorins were described. The high regioselective reactivity of active methylene compounds in Michael addition reaction was reported to access β-substituted trans-chlorins. Size-dependent approach was applied for the fine-tuning of product formation from porphyrins to chlorins. Notably, we were able to isolate mono/trisubstituted porphyrin and/or di/tetra-substituted chlorin from one-pot synthesis for the first time in porphyrin chemistry. Single-crystal X-ray diffraction analysis revealed the quasiplanar to moderate nonplanar conformation of chlorins due to trans orientation of β-substituents, whereas porphyrins exhibited higher mean plane deviation from 24-atom core (Δ24) as compared to chlorins. β-Functionalized chlorins exhibited lower protonation constants and much higher deprotonation constants as compared to porphyrins revealing the combined effect of the conformation of macrocyclic core and the electronic nature of β-substituents. Facile synthesis of porphyrins and/or chlorins based on the size of Michael donor employed and in turn resulted in tunable photophysical and electrochemical redox properties are the significant features of the present work.
Keyphrases
- electron transfer
- photodynamic therapy
- molecular docking
- molecularly imprinted
- quantum dots
- gold nanoparticles
- molecular dynamics simulations
- magnetic resonance imaging
- crystal structure
- staphylococcus aureus
- single cell
- escherichia coli
- fluorescent probe
- pseudomonas aeruginosa
- reduced graphene oxide
- kidney transplantation