π-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV.
Junxiu PanYanan ShiJianwei YuHao ZhangYanan LiuJianqi ZhangFeng GaoXi YuKun LuZhi-Xiang WeiPublished in: ACS applied materials & interfaces (2021)
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). Y5, a member of the Y-series acceptors, can achieve high Voc of 0.94 V with PM6 but low Jsc of 12.8 mA cm-2. To maintain the high Voc while increasing the Jsc of devices, we developed a new nonfullerene acceptor, namely, BTP-C2C4-N, by extending the conjugation of a Y5 molecule with a naphthalene-based end acceptor. In comparison with Y5-based devices, PM6:BTP-C2C4-N-based devices exhibited significantly higher Jsc of 18.2 mA cm-2 followed by a high Voc. To further increase the photovoltaic properties of BTP-C2C4-N analogues, BTP-C4C6-N and BTP-C6C8-N molecules with better processability and film morphology are obtained by adjusting the alkyl branched chain length. The optimized OSCs based on BTP-C4C6-N with a moderate alkyl branched chain length exhibited the best PCE of 12.4% with a high Voc of 0.94 V and Jsc of 20.7 mA cm-2. Notably, the devices achieved a low energy loss of 0.49 eV (0.51 eV for Y5 system) accompanied by a small nonradiative energy loss. The results indicate that nonfullerene acceptors with extended terminal motifs and optimized branched chain lengths can effectively enhance the performance of OSCs and reduce energy loss.