Login / Signup

Electrochemical sensors based on molecularly imprinted polymers for the detection of chlorophenols as emergent distributing chemicals (EDCs): a review.

Ayman H KamelHisham S M Abd-Rabboh
Published in: Analytical methods : advancing methods and applications (2024)
Environmental pollutants like chlorophenol chemicals and their derivatives are commonplace. These compounds serve as building blocks in the production of medicines, biocides, dyes, and agricultural chemicals. Chlorophenols enter the environment through several different pathways, including the breakdown of complex chlorinated hydrocarbons, industrial waste, herbicides, and insecticides. Chlorophenols are destroyed thermally and chemically, creating dangerous chemicals that pose a threat to public health. Water in particular is affected, and thorough monitoring is required to find this source of pollution because it can pose a major hazard to both human and environmental health. For the detection of chlorophenols, molecularly imprinted polymers (MIPs) have been incorporated into a variety of electrochemical sensing systems and assay formats. Due to their long-term chemical and physical stability as well as their simple and affordable synthesis process, MIPs have become intriguing synthetic alternatives over the past few decades. In this review, we concentrate on the commercial potential of the MIP technology. Additionally, we want to outline the most recent advancements in their incorporation into electrochemical sensors with a high commercial potential for detecting chlorophenols.
Keyphrases