Login / Signup

The application of a deep learning system developed to reduce the time for RT-PCR in COVID-19 detection.

Yoonje LeeYu-Seop KimDa-In LeeSeri JeongGu-Hyun KangYong Soo JangWonhee KimHyun Young ChoiJae Guk KimSang-Hoon Choi
Published in: Scientific reports (2022)
Reducing the time to diagnose COVID-19 helps to manage insufficient isolation-bed resources and adequately accommodate critically ill patients. There is currently no alternative method to real-time reverse transcriptase polymerase chain reaction (RT-PCR), which requires 40 cycles to diagnose COVID-19. We propose a deep learning (DL) model to improve the speed of COVID-19 RT-PCR diagnosis. We developed and tested a DL model using the long short-term memory method with a dataset of fluorescence values measured in each cycle of 5810 RT-PCR tests. Among the DL models developed here, the diagnostic performance of the 21st model showed an area under the receiver operating characteristic (AUROC), sensitivity, and specificity of 84.55%, 93.33%, and 75.72%, respectively. The diagnostic performance of the 24th model showed an AUROC, sensitivity, and specificity of 91.27%, 90.00%, and 92.54%, respectively.
Keyphrases
  • coronavirus disease
  • sars cov
  • deep learning
  • respiratory syndrome coronavirus
  • working memory
  • convolutional neural network
  • single molecule