Analysis and validation of a 3D finite element model for human forearm fracture.
Jing LiuAl-Khazraji MustafaVivien C LeesZhihui QianGuowu WeiXuewei LuJianqiao JinLei RenLuquan RenKunyang WangPublished in: International journal for numerical methods in biomedical engineering (2022)
Most researchers have performed finite element (FE) analysis of the human forearm fracture by exploring the strength and load transmission of the bones. However, few studies concentrated a complete simulation of the whole forearm complex including ligaments. This paper aims to investigate the load transmission through the bones, contact stress at the joints and strain in the ligaments by using an elaborate FE model, further validating the fracture condition for human forearm. The interosseous ligament was separated into three regions based on the distance to the proximal and distal ends. The FE simulation results were slightly more or less than a previous experimental data in the literature, but generally provided a close approximation of the bone and ligament behaviors. Compared with the experiment results under different loading conditions, maximum contact stress at the proximal radio ulnar joint (PRUJ) and distal radio ulnar joint (DRUJ) of the simulations was higher with an average of 13.4%, and peak strain in the interosseous ligament (IOL) was lower with an average of 11.0%. Under 10 kg load, the maximum stress in the radius (2.25 MPa) was less than double the value in the ulna (1.43 MPa). Finally, the FE model has been validated with the onset and location of the Colles' fracture in the literature. This study will provide a great benefit in terms of surgical and medical applications related to forearm fracture that require an extensive knowledge of the behavior of the bones and ligaments under various loading conditions.