Login / Signup

Metagenomics of two gnotobiotically grown aromatic rice cultivars reveals genotype-dependent and tissue-specific colonization of endophytic bacterial communities attributing multiple plant growth promoting traits.

Anagha KrishnamoorthyAbhishek GuptaPinaki SarMrinal Kumar Maiti
Published in: World journal of microbiology & biotechnology (2021)
Exploration of community structures, habitations, and potential plant growth promoting (PGP) attributes of endophytic bacteria through next generation sequencing (NGS) is a prerequisite to culturing PGP endophytic bacteria for their application in sustainable agriculture. The present study unravels the taxonomic abundance and diversity of endophytic bacteria inhabiting in vitro grown root, shoot and callus tissues of two aromatic rice cultivars through 16S rRNA gene-based Illumina NGS. Wide variability in the number of bacterial operational taxonomic units (OTUs) and genera was observed between the two samples of the root (55, 14 vs. 310, 76) and shoot (26, 12 vs. 276, 73) but not between the two callus samples (251, 61 vs. 259, 51), indicating tissue-specific and genotype-dependent bacterial community distribution in rice plant, even under similar gnotobiotic growth conditions. Sizes of core bacteriomes of the selected two rice genotypes varied from 1 to 15 genera, with Sphingomonas being the only genus detected in all six samples. Functional annotation, based upon the abundance of bacterial OTUs, revealed the presence of several PGP trait-related genes having variable relative abundance in tissue-specific and genotype-dependent manners. In silico study also documented a higher abundance of certain genes in the same biochemical pathway, such as nitrogen fixation, phosphate solubilization and indole acetic acid production; implying their crucial roles in the biosynthesis of metabolites leading to PGP. New insights on utilizing callus cultures for isolation of PGP endophytes aiming to improve rice crop productivity are presented, owing to constancy in bacterial OTUs and genera in callus tissues of both the rice genotypes.
Keyphrases