Synthesis of Air-Stable Cyclopentadienyl Fe(CO)2 (Fp) Polymers by a Host-Guest Interaction of Cyclodextrin with Air-Sensitive Fp Pendant Groups.
Na ZhouLiao PengShehan SalgadoJinying YuanXiao-Song WangPublished in: Angewandte Chemie (International ed. in English) (2017)
Host-guest chemistry is used to address the challenge of the synthesis of air-stable polymers containing air-sensitive metal complexes. The complexation of the CpFe(CO)2 (Fp) pendent group with cyclodextrin (CD) molecules created air-stable poly(Fp-methylstyrene) P(CD/FpMSt). This CD complexation resulted in dimerization of the adjacent Fp groups, which was characterized by NMR, FTIR, and cyclic voltammetry (CV) analyses. P(CD/FpMSt) was soluble in DMSO and remained stable even the solution was exposed to air for months. The host-guest chemistry accounted for the improved stability, because the Fp groups decomposed upon removal of the CD molecules using competing guest molecules. The CD-complexed polymer showed light-trigged properties, including CO release and antimicrobial activity. Host-guest chemistry of air-sensitive organometallic complexes is therefore a promising technique that can be used to broaden the scope of metal-containing polymers (MCPs) with processable novel functions.