Thermal Reshaping Dynamics of Gold Nanorods: Influence of Size, Shape, and Local Environment.
William Joshua KennedySarah IzorBryan D AndersonGeoffrey FrankVikas VarshneyGregory J EhlertPublished in: ACS applied materials & interfaces (2018)
The thermal reshaping of gold nanorods in a polymer matrix is an important phenomenon for many potential applications. However, a fundamental understanding of the various mechanisms that govern the nanorod reshaping dynamics is still lacking. Here, we provide evidence for a phenomenological model of the gold nanorod shape transformation based on the measurements and detailed analysis of the time-resolved thermal reshaping for a variety of gold nanorods having different geometries (aspect ratio, volume, diameter) in a cross-linked epoxy matrix at application relevant temperatures (120-220 °C). Our analysis suggests that (a) the nanorod reshaping dynamics consist of two temporal regimes that are governed by different phenomena and (b) the ultimate amount of reshaping at a given temperature depends strongly on the initial particle geometry and the mechanical stiffness of its surroundings. At short times, the shape transformation is dominated by a curvature-induced surface diffusion process, in which the activation energy for diffusion depends on curvature. At long times, however, the surrounding environment plays a key role in slowing the diffusion and stabilizing the nanorod shape. We show that the long-time behavior can be well described using a modified surface diffusion model that takes into account the slowing of atomic diffusivity as a result of external forces arising from mechanical constraints. The ability to tune both the final shape and the reshaping dynamics in nanocomposites opens up new possibilities in tailoring the optical properties of these materials.