Renal-Targeted Drug Delivery by Chitosan Oligosaccharide Micelles with HSA-Enriched Protein Corona for the Treatment of Ischemia/Reperfusion-Induced Acute Kidney Injury.
Simin NanYujie CheTao GongZhi-Rong ZhangYao FuPublished in: ACS applied materials & interfaces (2024)
Renal-specific nanoparticulate drug delivery systems have shown great potential in reducing systemic side effects and improving the safety and efficacy of treatments for renal diseases. Here, stearic acid-grafted chitosan oligosaccharide (COS-SA) was synthesized as a renal-targeted carrier due to the high affinity of the 2-glucosamine moiety on COS to the megalin receptor expressed on renal proximal tubular epithelial cells. Specifically, COS-SA/CLT micelles were prepared by encapsulating celastrol (CLT) with COS-SA, and different proportions of human serum albumin (HSA) were then adsorbed onto its surface to explore the interaction between the protein corona and cationic polymeric micelles. Our results showed that a multilayered protein corona, consisting of an inner "hard" corona and an outer "soft" corona, was formed on the surface of COS-SA/CLT@HSA 8 , which was beneficial in preventing its recognition and phagocytosis by macrophages. The formation of HSA protein corona on COS-SA/CLT micelles also increased its accumulation in the renal tubules. Furthermore, the electropositivity of COS-SA/CLT micelles affected the conformation of adsorbed proteins to various degrees. During the adsorption process, the protein corona on the surface of COS-SA/CLT@HSA 1 was partially denatured. Overall, COS-SA/CLT and COS-SA/CLT@HSA micelles demonstrated sufficient safety with renal targeting potential, providing a viable strategy for the management of ischemia/reperfusion-induced acute kidney injury.