Login / Signup

Self-assembly of a peptide sequence, EKKE, composed of exclusively charged amino acids: Role of charge in morphology and lead binding.

Aishwarya NatarajanKrishnan RanganRamakrishna Vadrevu
Published in: Journal of peptide science : an official publication of the European Peptide Society (2022)
The self-assembly of peptides is influenced by their amino acid sequence and other factors including pH, charge, temperature, and solvent. Herein, we explore whether a four-residue sequence, EKKE, consisting of exclusively charged amino acids shows the propensity to form self-assembled ordered nanostructures and whether the overall charge plays any role in morphological and functional properties. From a combination of experimental data provided by Thioflavin T fluorescence, Congo red absorbance, circular dichroism spectroscopy, dynamic light scattering, field emission-scanning electron microscopy, atomic force microscopy, and confocal microscopy, it is clear that the all-polar peptide and charged EKKE sequence shows a pH-dependent tendency to form amyloid-like structures, and the self-assembled entities under acidic, basic and neutral conditions exhibit morphological variation. Additionally, the ability of the self-assembled amyloid nanostructures to bind to the toxic metal, lead (Pb 2+ ), was demonstrated from the analysis of the ultraviolet absorbance and X-ray photoelectron spectroscopy data. The modulation at the sequence level for the amyloid-forming EKKE scaffold can further extend its potential role not only in the remediation of other toxic metals but also towards biomedical applications.
Keyphrases