An exploratory analysis of the structure of tetranychid and phytoseiid assemblages in walnut orchards in California.
Nicholas J MillsElizabeth E Grafton-CardwellKristen E TollerupPublished in: Experimental & applied acarology (2024)
Spider mites were considered secondary pests of walnut production in California, under the control of phytoseiid predators. Due to increased importance as walnut pests in recent decades there is renewed interest in the structure and function of the associated phytoseiid assemblage. In this study we report the results from a 3 year survey of the tetranychid and phytoseiid assemblages in walnut orchards in the Central Valley of California. The survey was conducted to determine the range and dominance of web-spinning Tetranychus species present, to investigate the species richness and dominance of the phytoseiid species present, and to explore whether patterns of variation in the relative abundance of phytoseiid species could be explained by one or more explanatory variables. Tetranychus urticae was the dominant spider mite in all growing regions and years with T. pacificus and T. turkestani also present in orchards in the southern San Joaquin Valley. Phytoseiid species richness declined with latitude among the three walnut growing regions and of the 13 species found Amblyseius similoides, Euseius stipulatus, Galendromus occidentalis and Typhlodromus caudiglans were the most abundant and widespread species present. Mean proportional abundance significantly increased from early (mid May-July) to late (August-mid October) season and from southern to northern growing regions for Type II and IV predators, but significantly decreased from early to late season and from southern to northern growing regions for Type III predators. The mean proportional abundance of Type II predators, particularly G. occidentalis, significantly increased and that of Type III predators significantly decreased with mean Tetranychus density in individual orchards. The current survey provides a more in-depth analysis of mite assemblages in walnut orchards in California and can be used to better inform adaptive management strategies for integrated mite management in the future.