A label-free and immobilization-free approach for constructing photoelectrochemical nucleic acid sensors utilizing DNA-silver nanoparticle affinity interactions.
Jing YiJiayao DongYawen ZhengLiu LiuJi ZhuHong-Wu TangPublished in: The Analyst (2024)
Efficient and affordable nucleic acid detection methods play a pivotal role in various applications. Herein, we developed an immobilization-free and label-free strategy to construct a photoelectrochemical nucleic acid biosensing platform based on interactions between silver nanoparticles and DNA. First, CRISPR-Cas12a exhibited a trans-cleavage effect on adenine nucleotide sequences upon recognizing the target DNA. The resulting adenine nucleotide sequences of varying lengths then engaged in interactions with silver nanoparticles, leading to a solution characterized by distinct light transmittance. Subsequently, the solution was positioned between the light source and the photoelectrode, strategically impacting the photon absorption step within the photoelectrochemical process. Consequently, the detection of nucleic acid was accomplished through the analysis of the resultant photocurrent signal. The developed platform exhibits a detection limit of 0.06 nM (S/N = 3) with commendable selectivity. The innovative use of adenine nucleotide sequences as cost-effective probes interacting with silver nanoparticles eliminates the need for complex interfacial immobilization processes, significantly simplifying the fabrication of DNA sensors. The outcomes of our research present a promising pathway for advancing the development of economically feasible miniature DNA sensors.
Keyphrases
- nucleic acid
- label free
- silver nanoparticles
- crispr cas
- low cost
- circulating tumor
- high throughput
- type diabetes
- skeletal muscle
- metabolic syndrome
- cell free
- mass spectrometry
- photodynamic therapy
- small molecule
- weight loss
- insulin resistance
- magnetic nanoparticles
- dna binding
- loop mediated isothermal amplification
- circulating tumor cells